🧠 LoRA Support #37

Open
opened 2025-06-07 20:07:03 -04:00 by milo · 0 comments
Owner

📌 Objective

Enable the bot to load and use LoRA (Low-Rank Adapter) weights on top of a base model (e.g. LLaMA3 or DeepSeek) to inject stronger personality, memory, or domain-specific behavior without retraining the entire model.


Phase 1: Add LoRA Config

  • Extend settings.yml:

    ai:
      use_lora: true
      lora_path: "./loras/gojo"
    
  • Optionally allow override via environment variable:

    LORA_PATH=./loras/gojo
    

⚙️ Phase 2: Update AI Backend

  • Modify ai.py to:
    • Load lora_path if use_lora: true
    • When calling /generate (or /modelfile), include:
      {
        "model": "llama3",
        "lora": "gojo",
        "prompt": "..."
      }
      
    • Validate that the LoRA exists (may require preload or pull)
    • Add fallback log if not found

🛠️ Phase 3: Add CLI or Admin Commands (Optional)

  • !lora enable gojo
  • !lora disable
  • !lora list (if supported by backend)
  • !lora status

🧪 Phase 4: LoRA Management + Testing

  • Set up a test LoRA directory (e.g. ./loras/gojo)
  • Confirm inference works with:
    • Ollama modfile using ADAPTER line:
      FROM llama3
      ADAPTER ./loras/gojo
      
    • Or by passing lora field to /generate

📁 Directory Structure Example

/src/
  └── ai.py
/loras/
  └── gojo/
      ├── adapter_config.json
      └── adapter_model.safetensors

🧩 Future Possibilities

  • Train your own LoRA (requires datasets + fine-tuning script)
  • Use peft, qlora, or transformers with tools like:
    • Axolotl
    • text-generation-webui
    • lm-studio (preview LoRAs)
  • Host custom LoRA as an API endpoint

🚀 Benefit Summary

  • Way stronger character fidelity (esp. for anime, roleplay, or creators)
  • Switch between personas without switching base models
  • Smaller size + faster than full fine-tuning
### 📌 Objective Enable the bot to load and use **LoRA (Low-Rank Adapter)** weights on top of a base model (e.g. LLaMA3 or DeepSeek) to inject stronger personality, memory, or domain-specific behavior without retraining the entire model. --- ### ✅ Phase 1: Add LoRA Config - [ ] Extend `settings.yml`: ```yaml ai: use_lora: true lora_path: "./loras/gojo" ``` - [ ] Optionally allow override via environment variable: ```env LORA_PATH=./loras/gojo ``` --- ### ⚙️ Phase 2: Update AI Backend - [ ] Modify `ai.py` to: - Load `lora_path` if `use_lora: true` - When calling `/generate` (or `/modelfile`), **include**: ```json { "model": "llama3", "lora": "gojo", "prompt": "..." } ``` - Validate that the LoRA exists (may require preload or pull) - Add fallback log if not found --- ### 🛠️ Phase 3: Add CLI or Admin Commands (Optional) - `!lora enable gojo` - `!lora disable` - `!lora list` *(if supported by backend)* - `!lora status` --- ### 🧪 Phase 4: LoRA Management + Testing - [ ] Set up a test LoRA directory (e.g. `./loras/gojo`) - [ ] Confirm inference works with: - Ollama modfile using `ADAPTER` line: ```mod FROM llama3 ADAPTER ./loras/gojo ``` - Or by passing `lora` field to `/generate` --- ### 📁 Directory Structure Example ``` /src/ └── ai.py /loras/ └── gojo/ ├── adapter_config.json └── adapter_model.safetensors ``` --- ### 🧩 Future Possibilities - Train your own LoRA (requires datasets + fine-tuning script) - Use `peft`, `qlora`, or `transformers` with tools like: - `Axolotl` - `text-generation-webui` - `lm-studio` (preview LoRAs) - Host custom LoRA as an API endpoint --- ### 🚀 Benefit Summary - Way stronger character fidelity (esp. for anime, roleplay, or creators) - Switch between personas without switching base models - Smaller size + faster than full fine-tuning
milo added the
High Priority
💡feature
labels 2025-06-07 20:07:11 -04:00
milo added this to the Alpha Build Ready milestone 2025-06-07 20:07:16 -04:00
milo added this to the Minimum Viable Product project 2025-06-07 20:07:19 -04:00
milo self-assigned this 2025-06-07 20:07:22 -04:00
Sign in to join this conversation.
No description provided.