# ai.py
# This file handles all AI interactions, including loading/unloading models,
# generating responses, and injecting personas using the Ollama API.
import os
import requests
import re
import yaml
from dotenv import load_dotenv
from personality import load_persona
from user_profiles import format_profile_for_block
from logger import setup_logger, generate_req_id, log_llm_request, log_llm_response
from modelfile import load_modfile_if_exists, parse_mod_file
debug_mode = os.getenv("DEBUG_MODE", "false").lower() == "true"
# Set up logger specifically for AI operations
logger = setup_logger("ai")
# Load environment variables from .env file
load_dotenv()
# Load settings.yml to fetch ai.modfile config
try:
settings_path = os.path.join(os.path.dirname(__file__), "settings.yml")
with open(settings_path, "r", encoding="utf-8") as f:
SETTINGS = yaml.safe_load(f)
except Exception:
SETTINGS = {}
# Modelfile config
AI_USE_MODFILE = SETTINGS.get("ai", {}).get("use_modfile", False)
AI_MODFILE_PATH = SETTINGS.get("ai", {}).get("modfile_path")
MODFILE = None
if AI_USE_MODFILE and AI_MODFILE_PATH:
try:
MODFILE = load_modfile_if_exists(AI_MODFILE_PATH)
if MODFILE:
# Resolve includes (best-effort): merge params and append system/template
def _resolve_includes(mod):
merged = dict(mod)
src = merged.get('_source_path')
includes = merged.get('includes', []) or []
base_dir = os.path.dirname(src) if src else os.path.dirname(__file__)
for inc in includes:
try:
# Resolve relative to base_dir
cand = inc if os.path.isabs(inc) else os.path.normpath(os.path.join(base_dir, inc))
if not os.path.exists(cand):
continue
inc_mod = parse_mod_file(cand)
# Merge params (included params do not override main ones)
inc_params = inc_mod.get('params', {}) or {}
for k, v in inc_params.items():
if k not in merged.get('params', {}):
merged.setdefault('params', {})[k] = v
# Append system text if main doesn't have one
if not merged.get('system') and inc_mod.get('system'):
merged['system'] = inc_mod.get('system')
# If main has no template, adopt included template
if not merged.get('template') and inc_mod.get('template'):
merged['template'] = inc_mod.get('template')
except Exception:
continue
return merged
MODFILE = _resolve_includes(MODFILE)
logger.info(f"๐ Modelfile loaded: {AI_MODFILE_PATH}")
else:
logger.warning(f"โ ๏ธ Modelfile not found or failed to parse: {AI_MODFILE_PATH}")
except Exception as e:
logger.exception("โ ๏ธ Exception while loading modelfile: %s", e)
# If no modelfile explicitly configured, attempt to auto-load a `delta.mod` or
# `delta.json` in common example/persona locations so the bot has a default persona.
if not MODFILE:
for candidate in [
os.path.join(os.path.dirname(__file__), '..', 'examples', 'delta.mod'),
os.path.join(os.path.dirname(__file__), '..', 'examples', 'delta.json'),
os.path.join(os.path.dirname(__file__), '..', 'personas', 'delta.mod'),
]:
try:
mod = load_modfile_if_exists(candidate)
if mod:
MODFILE = mod
logger.info(f"๐ Auto-loaded default modelfile: {candidate}")
break
except Exception:
continue
def list_modelfiles(search_dirs=None):
"""Return a list of candidate modelfile paths from common locations."""
base_dir = os.path.normpath(os.path.join(os.path.dirname(__file__), '..'))
if search_dirs is None:
search_dirs = [
os.path.join(base_dir, 'examples'),
os.path.join(base_dir, 'personas'),
os.path.join(base_dir, 'src'),
base_dir,
]
results = []
for d in search_dirs:
try:
if not os.path.isdir(d):
continue
for fname in os.listdir(d):
if fname.endswith('.mod') or fname.endswith('.json'):
results.append(os.path.join(d, fname))
except Exception:
continue
return sorted(results)
# Base API setup from .env (e.g., http://localhost:11434/api)
# Normalize to ensure the configured base includes the `/api` prefix so
# endpoints like `/generate` and `/tags` are reachable even if the user
# sets `OLLAMA_API` without `/api`.
raw_api = os.getenv("OLLAMA_API") or ""
raw_api = raw_api.rstrip("/")
if raw_api == "":
BASE_API = ""
else:
BASE_API = raw_api if raw_api.endswith("/api") else f"{raw_api}/api"
# API endpoints for different Ollama operations
GEN_ENDPOINT = f"{BASE_API}/generate"
PULL_ENDPOINT = f"{BASE_API}/pull"
# UNLOAD_ENDPOINT is not used because unloading is done via `generate` with keep_alive=0
TAGS_ENDPOINT = f"{BASE_API}/tags"
# Startup model and debug toggle from .env
MODEL_NAME = os.getenv("MODEL_NAME", "llama3:latest")
SHOW_THINKING_BLOCKS = os.getenv("SHOW_THINKING_BLOCKS", "false").lower() == "true"
AI_INCLUDE_CONTEXT = os.getenv("AI_INCLUDE_CONTEXT", "true").lower() == "true"
# Ensure API base is configured
if not BASE_API:
logger.error("โ OLLAMA_API not set.")
raise ValueError("โ OLLAMA_API not set.")
# Returns current model from env/config
def get_model_name():
return MODEL_NAME
# Removes ... blocks from the LLM response (used by some models)
def strip_thinking_block(text: str) -> str:
return re.sub(r".*?\s*", "", text, flags=re.DOTALL)
# Check if a model exists locally by calling /tags
def model_exists_locally(model_name: str) -> bool:
try:
resp = requests.get(TAGS_ENDPOINT)
return model_name in resp.text
except Exception as e:
logger.error(f"โ Failed to check local models: {e}")
return False
# Attempt to pull (load) a model via Ollama's /pull endpoint
def load_model(model_name: str) -> bool:
try:
logger.info(f"๐ง Preloading model: {model_name}")
resp = requests.post(PULL_ENDPOINT, json={"name": model_name})
if debug_mode:
logger.debug(f"๐จ Ollama pull response: {resp.status_code} - {resp.text}")
else:
if resp.status_code == 200:
logger.info("๐ฆ Model pull started successfully.")
else:
logger.warning(f"โ ๏ธ Model pull returned {resp.status_code}: {resp.text[:100]}...")
return resp.status_code == 200
except Exception as e:
logger.error(f"โ Exception during model load: {str(e)}")
return False
# Send an empty prompt to unload a model from VRAM safely using keep_alive: 0
def unload_model(model_name: str) -> bool:
try:
logger.info(f"๐งน Sending safe unload request for `{model_name}`")
payload = {
"model": model_name,
"prompt": "", # โ
Required to make the request valid
"keep_alive": 0 # โ
Unload from VRAM but keep on disk
}
resp = requests.post(GEN_ENDPOINT, json=payload)
logger.info(f"๐งฝ Ollama unload response: {resp.status_code} - {resp.text}")
return resp.status_code == 200
except Exception as e:
logger.error(f"โ Exception during soft-unload: {str(e)}")
return False
# Shortcut for getting the current model (can be expanded later for dynamic switching)
def get_current_model():
return get_model_name()
# Main LLM interaction โ injects personality and sends prompt to Ollama
def get_ai_response(user_prompt, context=None, user_profile=None):
model_name = get_model_name()
load_model(model_name)
persona = load_persona()
# Build prompt pieces
# If a modelfile is active and provides a SYSTEM, prefer it over persona prompt_inject
system_inject = ""
if MODFILE and MODFILE.get('system'):
system_inject = MODFILE.get('system')
elif persona:
system_inject = persona["prompt_inject"].replace("โ", '"').replace("โ", '"').replace("โ", "'")
user_block = ""
if user_profile and user_profile.get("custom_prompt"):
user_block = f"[User Instruction]\n{user_profile['custom_prompt']}\n"
context_block = f"[Recent Conversation]\n{context}\n" if (context and AI_INCLUDE_CONTEXT) else ""
# If a modelfile is active and defines a template, render it (best-effort)
full_prompt = None
if MODFILE:
tpl = MODFILE.get('template')
if tpl:
# Simple template handling: remove simple Go-style conditionals
tpl_work = re.sub(r"\{\{\s*if\s+\.System\s*\}\}", "", tpl)
tpl_work = re.sub(r"\{\{\s*end\s*\}\}", "", tpl_work)
# Build the prompt body we want to inject as .Prompt
prompt_body = f"{user_block}{context_block}User: {user_prompt}\n"
# Replace common placeholders
tpl_work = tpl_work.replace("{{ .System }}", system_inject)
tpl_work = tpl_work.replace("{{ .Prompt }}", prompt_body)
tpl_work = tpl_work.replace("{{ .User }}", user_block)
full_prompt = tpl_work.strip()
else:
# No template: use system_inject and do not append persona name
full_prompt = f"{system_inject}\n{user_block}{context_block}User: {user_prompt}\nResponse:"
else:
# No modelfile active: fall back to persona behaviour (include persona name)
if persona:
full_prompt = f"{system_inject}\n{user_block}{context_block}\nUser: {user_prompt}\n{persona['name']}:"
else:
full_prompt = f"{user_block}{context_block}\nUser: {user_prompt}\nResponse:"
# Build base payload and merge modelfile params if present
payload = {"model": model_name, "prompt": full_prompt, "stream": False}
if MODFILE and MODFILE.get('params'):
for k, v in MODFILE.get('params', {}).items():
payload[k] = v
# Logging: concise info plus debug for full payload/response
req_id = generate_req_id("llm-")
user_label = user_profile.get("display_name") if user_profile else None
log_llm_request(logger, req_id, model_name, user_label, len(context.splitlines()) if context else 0)
logger.debug("%s Sending payload to Ollama: model=%s user=%s", req_id, model_name, user_label)
logger.debug("%s Payload size=%d chars", req_id, len(full_prompt))
import time
start = time.perf_counter()
try:
response = requests.post(GEN_ENDPOINT, json=payload)
duration = time.perf_counter() - start
# Log raw response only at DEBUG to avoid clutter
logger.debug("%s Raw response status=%s", req_id, response.status_code)
logger.debug("%s Raw response body=%s", req_id, getattr(response, "text", ""))
if response.status_code == 200:
result = response.json()
short = (result.get("response") or "").replace("\n", " ")[:240]
log_llm_response(logger, req_id, model_name, duration, short, raw=result)
return result.get("response", "[No message in response]")
else:
# include status in logs and return an error string
log_llm_response(logger, req_id, model_name, duration, f"[Error {response.status_code}]", raw=response.text)
return f"[Error {response.status_code}] {response.text}"
except Exception as e:
duration = time.perf_counter() - start
logger.exception("%s Exception during LLM call", req_id)
log_llm_response(logger, req_id, model_name, duration, f"[Exception] {e}")
return f"[Exception] {str(e)}"
# Runtime modelfile management APIs -------------------------------------------------
def load_modelfile(path: str = None) -> bool:
"""Load (or reload) a modelfile at runtime.
If `path` is provided, update the configured modelfile path and attempt
to load from that location. Returns True on success.
"""
global MODFILE, AI_MODFILE_PATH, AI_USE_MODFILE
if path:
AI_MODFILE_PATH = path
try:
# Enable modelfile usage if it was disabled
AI_USE_MODFILE = True
if not AI_MODFILE_PATH:
logger.warning("โ ๏ธ No modelfile path configured to load.")
return False
mod = load_modfile_if_exists(AI_MODFILE_PATH)
MODFILE = mod
if MODFILE:
logger.info(f"๐ Modelfile loaded: {AI_MODFILE_PATH}")
return True
else:
logger.warning(f"โ ๏ธ Modelfile not found or failed to parse: {AI_MODFILE_PATH}")
return False
except Exception as e:
logger.exception("โ ๏ธ Exception while loading modelfile: %s", e)
return False
def unload_modelfile() -> bool:
"""Disable/unload the currently active modelfile so persona injection
falls back to the standard `persona.json` mechanism."""
global MODFILE, AI_USE_MODFILE
MODFILE = None
AI_USE_MODFILE = False
logger.info("๐ Modelfile unloaded/disabled at runtime.")
return True
def get_modelfile_info() -> dict | None:
"""Return a small diagnostic dict about the currently loaded modelfile,
or None if no modelfile is active."""
if not MODFILE:
return None
return {
"_source_path": MODFILE.get("_source_path"),
"base_model": MODFILE.get("base_model"),
"params": MODFILE.get("params"),
"system_preview": (MODFILE.get("system") or "")[:300]
}
def build_dryrun_payload(user_prompt, context=None, user_profile=None) -> dict:
"""Build and return the assembled prompt and payload that would be
sent to the model, without performing any HTTP calls. Useful for
inspecting template rendering and merged modelfile params.
Returns: { 'prompt': str, 'payload': dict }
"""
model_name = get_model_name()
# Reuse main prompt building logic but avoid calling load_model()
persona = load_persona()
# Build prompt pieces (same logic as `get_ai_response`)
system_inject = ""
if MODFILE and MODFILE.get('system'):
system_inject = MODFILE.get('system')
elif persona:
system_inject = persona["prompt_inject"].replace("โ", '"').replace("โ", '"').replace("โ", "'")
user_block = ""
if user_profile and user_profile.get("custom_prompt"):
user_block = f"[User Instruction]\n{user_profile['custom_prompt']}\n"
context_block = f"[Recent Conversation]\n{context}\n" if (context and AI_INCLUDE_CONTEXT) else ""
if MODFILE:
tpl = MODFILE.get('template')
if tpl:
tpl_work = re.sub(r"\{\{\s*if\s+\.System\s*\}\}", "", tpl)
tpl_work = re.sub(r"\{\{\s*end\s*\}\}", "", tpl_work)
prompt_body = f"{user_block}{context_block}User: {user_prompt}\n"
tpl_work = tpl_work.replace("{{ .System }}", system_inject)
tpl_work = tpl_work.replace("{{ .Prompt }}", prompt_body)
tpl_work = tpl_work.replace("{{ .User }}", user_block)
full_prompt = tpl_work.strip()
else:
full_prompt = f"{system_inject}\n{user_block}{context_block}User: {user_prompt}\nResponse:"
else:
if persona:
full_prompt = f"{system_inject}\n{user_block}{context_block}\nUser: {user_prompt}\n{persona['name']}:"
else:
full_prompt = f"{user_block}{context_block}\nUser: {user_prompt}\nResponse:"
# Build payload and merge modelfile params
payload = {"model": model_name, "prompt": full_prompt, "stream": False}
if MODFILE and MODFILE.get('params'):
for k, v in MODFILE.get('params', {}).items():
payload[k] = v
return {"prompt": full_prompt, "payload": payload}