96 lines
2.9 KiB
Python
96 lines
2.9 KiB
Python
|
|
import spacy
|
||
|
|
import mysql.connector
|
||
|
|
import os
|
||
|
|
import sys
|
||
|
|
from collections import Counter
|
||
|
|
|
||
|
|
# === Load spaCy model ===
|
||
|
|
nlp = spacy.load("en_core_web_sm")
|
||
|
|
|
||
|
|
# === DB Credentials ===
|
||
|
|
DB_HOST = os.getenv("DB_HOST", "localhost")
|
||
|
|
DB_PORT = int(os.getenv("DB_PORT", 3306))
|
||
|
|
DB_USER = os.getenv("DB_USER", "emailuser")
|
||
|
|
DB_PASSWORD = os.getenv("DB_PASSWORD", "miguel33020")
|
||
|
|
DB_NAME = os.getenv("DB_NAME", "emailassistant")
|
||
|
|
|
||
|
|
# === Connect to DB ===
|
||
|
|
conn = mysql.connector.connect(
|
||
|
|
host=DB_HOST,
|
||
|
|
port=DB_PORT,
|
||
|
|
user=DB_USER,
|
||
|
|
password=DB_PASSWORD,
|
||
|
|
database=DB_NAME
|
||
|
|
)
|
||
|
|
cursor = conn.cursor(dictionary=True)
|
||
|
|
|
||
|
|
# === Logging Helper ===
|
||
|
|
def log_event(cursor, level, source, message):
|
||
|
|
cursor.execute(
|
||
|
|
"INSERT INTO logs (level, source, message) VALUES (%s, %s, %s)",
|
||
|
|
(level, source, message)
|
||
|
|
)
|
||
|
|
|
||
|
|
# === Subject-Based Summarization ===
|
||
|
|
def summarize_subject(subject):
|
||
|
|
doc = nlp(subject)
|
||
|
|
keywords = [token.text for token in doc if token.is_alpha and not token.is_stop]
|
||
|
|
if not keywords:
|
||
|
|
return subject, 1.0 # fallback to raw subject
|
||
|
|
|
||
|
|
# Prioritize noun chunks that include keywords
|
||
|
|
noun_chunks = list(doc.noun_chunks)
|
||
|
|
chunks = [chunk.text for chunk in noun_chunks if any(tok.text in keywords for tok in chunk)]
|
||
|
|
|
||
|
|
# Combine and limit summary length
|
||
|
|
compressed = " ".join(chunks or keywords)
|
||
|
|
compressed_words = compressed.split()
|
||
|
|
subject_word_count = len(subject.split())
|
||
|
|
summary = " ".join(compressed_words[:max(1, subject_word_count - 1)]).strip()
|
||
|
|
|
||
|
|
# Confidence is relative to subject word count
|
||
|
|
confidence = round(len(summary.split()) / max(1, subject_word_count), 2)
|
||
|
|
|
||
|
|
# Fallback if summary is too short or confidence too low
|
||
|
|
if len(summary.split()) < 2 or confidence < 0.3:
|
||
|
|
return subject, 1.0
|
||
|
|
|
||
|
|
return summary, confidence
|
||
|
|
|
||
|
|
# === Fetch emails with NULL ai_summary ===
|
||
|
|
cursor.execute("SELECT id, subject FROM emails")
|
||
|
|
emails = cursor.fetchall()
|
||
|
|
|
||
|
|
# === Main Processing Loop ===
|
||
|
|
# === Main Processing Loop ===
|
||
|
|
for email in emails:
|
||
|
|
email_id = email["id"]
|
||
|
|
subject = email["subject"]
|
||
|
|
|
||
|
|
if not subject or not subject.strip():
|
||
|
|
log_event(cursor, "WARNING", "subject_summarizer", f"Skipped empty subject for email ID {email_id}")
|
||
|
|
continue
|
||
|
|
|
||
|
|
try:
|
||
|
|
summary, confidence = summarize_subject(subject)
|
||
|
|
|
||
|
|
cursor.execute("""
|
||
|
|
UPDATE emails
|
||
|
|
SET ai_summary = %s,
|
||
|
|
ai_confidence = %s
|
||
|
|
WHERE id = %s
|
||
|
|
""", (summary, confidence, email_id))
|
||
|
|
|
||
|
|
log_event(cursor, "INFO", "subject_summarizer", f"Subject summarized for email ID {email_id}")
|
||
|
|
print(f"✅ Subject summarized for email {email_id} (confidence: {confidence})")
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
log_event(cursor, "ERROR", "subject_summarizer", f"Error on email ID {email_id}: {str(e)}")
|
||
|
|
print(f"❌ Error summarizing subject for email {email_id}: {e}")
|
||
|
|
|
||
|
|
|
||
|
|
# === Commit & Close ===
|
||
|
|
conn.commit()
|
||
|
|
cursor.close()
|
||
|
|
conn.close()
|