RedboneBackup/printer_data/config/scripts/graph_vibrations.py

256 lines
10 KiB
Python
Raw Permalink Normal View History

#!/usr/bin/env python3
##################################################
###### SPEED AND VIBRATIONS PLOTTING SCRIPT ######
##################################################
# Written by Frix_x#0161 #
# @version: 1.2
# CHANGELOG:
# v1.2: fixed a bug that could happen when username is not "pi" (thanks @spikeygg)
# v1.1: better graph formatting
# v1.0: first version of the script
# Be sure to make this script executable using SSH: type 'chmod +x ./graph_vibrations.py' when in the folder !
#####################################################################
################ !!! DO NOT EDIT BELOW THIS LINE !!! ################
#####################################################################
import optparse, matplotlib, re, sys, importlib, os, operator
from collections import OrderedDict
import numpy as np
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
import matplotlib.ticker
matplotlib.use('Agg')
######################################################################
# Computation
######################################################################
def calc_freq_response(data):
# Use Klipper standard input shaper objects to do the computation
helper = shaper_calibrate.ShaperCalibrate(printer=None)
return helper.process_accelerometer_data(data)
def calc_psd(datas, group, max_freq):
psd_list = []
first_freqs = None
signal_axes = ['x', 'y', 'z', 'all']
for i in range(0, len(datas), group):
# Round up to the nearest power of 2 for faster FFT
N = datas[i].shape[0]
T = datas[i][-1,0] - datas[i][0,0]
M = 1 << int((N/T) * 0.5 - 1).bit_length()
if N <= M:
# If there is not enough lines in the array to be able to round up to the
# nearest power of 2, we need to pad some zeros at the end of the array to
# avoid entering a blocking state from Klipper shaper_calibrate.py
datas[i] = np.pad(datas[i], [(0, (M-N)+1), (0, 0)], mode='constant', constant_values=0)
freqrsp = calc_freq_response(datas[i])
for n in range(group - 1):
data = datas[i + n + 1]
# Round up to the nearest power of 2 for faster FFT
N = data.shape[0]
T = data[-1,0] - data[0,0]
M = 1 << int((N/T) * 0.5 - 1).bit_length()
if N <= M:
# If there is not enough lines in the array to be able to round up to the
# nearest power of 2, we need to pad some zeros at the end of the array to
# avoid entering a blocking state from Klipper shaper_calibrate.py
data = np.pad(data, [(0, (M-N)+1), (0, 0)], mode='constant', constant_values=0)
freqrsp.add_data(calc_freq_response(data))
if not psd_list:
# First group, just put it in the result list
first_freqs = freqrsp.freq_bins
psd = freqrsp.psd_sum[first_freqs <= max_freq]
px = freqrsp.psd_x[first_freqs <= max_freq]
py = freqrsp.psd_y[first_freqs <= max_freq]
pz = freqrsp.psd_z[first_freqs <= max_freq]
psd_list.append([psd, px, py, pz])
else:
# Not the first group, we need to interpolate every new signals
# to the first one to equalize the frequency_bins between them
signal_normalized = dict()
freqs = freqrsp.freq_bins
for axe in signal_axes:
signal = freqrsp.get_psd(axe)
signal_normalized[axe] = np.interp(first_freqs, freqs, signal)
# Remove data above max_freq on all axes and add to the result list
psd = signal_normalized['all'][first_freqs <= max_freq]
px = signal_normalized['x'][first_freqs <= max_freq]
py = signal_normalized['y'][first_freqs <= max_freq]
pz = signal_normalized['z'][first_freqs <= max_freq]
psd_list.append([psd, px, py, pz])
return first_freqs[first_freqs <= max_freq], psd_list
def calc_powertot(psd_list, freqs):
pwrtot_sum = []
pwrtot_x = []
pwrtot_y = []
pwrtot_z = []
for psd in psd_list:
pwrtot_sum.append(np.trapz(psd[0], freqs))
pwrtot_x.append(np.trapz(psd[1], freqs))
pwrtot_y.append(np.trapz(psd[2], freqs))
pwrtot_z.append(np.trapz(psd[3], freqs))
return [pwrtot_sum, pwrtot_x, pwrtot_y, pwrtot_z]
######################################################################
# Graphing
######################################################################
def plot_total_power(ax, speeds, power_total):
ax.set_title('Vibrations decomposition')
ax.set_xlabel('Speed (mm/s)')
ax.set_ylabel('Energy')
ax.plot(speeds, power_total[0], label="X+Y+Z", alpha=0.6)
ax.plot(speeds, power_total[1], label="X", alpha=0.6)
ax.plot(speeds, power_total[2], label="Y", alpha=0.6)
ax.plot(speeds, power_total[3], label="Z", alpha=0.6)
ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
ax.grid(which='major', color='grey')
ax.grid(which='minor', color='lightgrey')
fontP = matplotlib.font_manager.FontProperties()
fontP.set_size('medium')
ax.legend(loc='best', prop=fontP)
return
def plot_spectrogram(ax, speeds, freqs, power_spectral_densities, max_freq):
spectrum = np.empty([len(freqs), len(speeds)])
for i in range(len(speeds)):
for j in range(len(freqs)):
spectrum[j, i] = power_spectral_densities[i][0][j]
ax.set_title("Summed vibrations spectrogram")
ax.pcolormesh(speeds, freqs, spectrum, norm=matplotlib.colors.LogNorm(),
cmap='inferno', shading='gouraud')
ax.set_ylim([0., max_freq])
ax.set_ylabel('Frequency (hz)')
ax.set_xlabel('Speed (mm/s)')
return
######################################################################
# Startup and main routines
######################################################################
def parse_log(logname, opts):
with open(logname) as f:
for header in f:
if not header.startswith('#'):
break
if not header.startswith('freq,psd_x,psd_y,psd_z,psd_xyz'):
# Raw accelerometer data
return np.loadtxt(logname, comments='#', delimiter=',')
# Power spectral density data or shaper calibration data
opts.error("File %s does not contain raw accelerometer data and therefore "
"is not supported by graph_vibrations.py script. Please use "
"calibrate_shaper.py script to process it instead." % (logname,))
def extract_speed(logname, opts):
try:
speed = re.search('sp(.+?)n', os.path.basename(logname)).group(1)
except AttributeError:
opts.error("File %s does not contain speed in its name and therefore "
"is not supported by graph_vibrations.py script." % (logname,))
return int(speed)
def sort_and_slice(raw_speeds, raw_datas, remove):
# Sort to get the speeds and their datas aligned and in ascending order
raw_speeds, raw_datas = zip(*sorted(zip(raw_speeds, raw_datas), key=operator.itemgetter(0)))
# Remove beginning and end of the datas for each file to get only
# constant speed data and remove the start/stop phase of the movements
datas = []
for data in raw_datas:
sliced = round((len(data) * remove / 100) / 2)
datas.append(data[sliced:len(data)-sliced])
return raw_speeds, datas
def setup_klipper_import(kdir):
global shaper_calibrate
sys.path.append(os.path.join(kdir, 'klippy'))
shaper_calibrate = importlib.import_module('.shaper_calibrate', 'extras')
def main():
# Parse command-line arguments
usage = "%prog [options] <raw logs>"
opts = optparse.OptionParser(usage)
opts.add_option("-o", "--output", type="string", dest="output",
default=None, help="filename of output graph")
opts.add_option("-a", "--axis", type="string", dest="axisname",
default=None, help="axis name to be shown on the side of the graph")
opts.add_option("-f", "--max_freq", type="float", default=1000.,
help="maximum frequency to graph")
opts.add_option("-r", "--remove", type="int", default=0,
help="percentage of data removed at start/end of each files")
opts.add_option("-k", "--klipper_dir", type="string", dest="klipperdir",
default="/home/pi/klipper", help="main klipper directory")
options, args = opts.parse_args()
if len(args) < 1:
opts.error("No CSV file(s) to analyse")
if options.output is None:
opts.error("You must specify an output file.png to use the script (option -o)")
if options.remove > 50 or options.remove < 0:
opts.error("You must specify a correct percentage (option -r) in the 0-50 range")
setup_klipper_import(options.klipperdir)
# Parse the raw data and get them ready for analysis
raw_datas = [parse_log(filename, opts) for filename in args]
raw_speeds = [extract_speed(filename, opts) for filename in args]
speeds, datas = sort_and_slice(raw_speeds, raw_datas, options.remove)
# As we assume that we have the same number of file for each speeds. We can group
# the PSD results by this number (to combine vibrations at given speed on all movements)
group_by = speeds.count(speeds[0])
# Compute psd and total power of the signal
freqs, power_spectral_densities = calc_psd(datas, group_by, options.max_freq)
power_total = calc_powertot(power_spectral_densities, freqs)
fig, axs = matplotlib.pyplot.subplots(2, 1, sharex=True)
fig.suptitle("Machine vibrations - " + options.axisname + " moves", fontsize=16)
# Remove speeds duplicates and graph the processed datas
speeds = list(OrderedDict((x, True) for x in speeds).keys())
plot_total_power(axs[0], speeds, power_total)
plot_spectrogram(axs[1], speeds, freqs, power_spectral_densities, options.max_freq)
fig.set_size_inches(10, 10)
fig.tight_layout()
fig.subplots_adjust(top=0.92)
fig.savefig(options.output)
if __name__ == '__main__':
main()