#!/usr/bin/env python3 ################################################## ###### SPEED AND VIBRATIONS PLOTTING SCRIPT ###### ################################################## # Written by Frix_x#0161 # # @version: 1.2 # CHANGELOG: # v1.2: fixed a bug that could happen when username is not "pi" (thanks @spikeygg) # v1.1: better graph formatting # v1.0: first version of the script # Be sure to make this script executable using SSH: type 'chmod +x ./graph_vibrations.py' when in the folder ! ##################################################################### ################ !!! DO NOT EDIT BELOW THIS LINE !!! ################ ##################################################################### import optparse, matplotlib, re, sys, importlib, os, operator from collections import OrderedDict import numpy as np import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager import matplotlib.ticker matplotlib.use('Agg') ###################################################################### # Computation ###################################################################### def calc_freq_response(data): # Use Klipper standard input shaper objects to do the computation helper = shaper_calibrate.ShaperCalibrate(printer=None) return helper.process_accelerometer_data(data) def calc_psd(datas, group, max_freq): psd_list = [] first_freqs = None signal_axes = ['x', 'y', 'z', 'all'] for i in range(0, len(datas), group): # Round up to the nearest power of 2 for faster FFT N = datas[i].shape[0] T = datas[i][-1,0] - datas[i][0,0] M = 1 << int((N/T) * 0.5 - 1).bit_length() if N <= M: # If there is not enough lines in the array to be able to round up to the # nearest power of 2, we need to pad some zeros at the end of the array to # avoid entering a blocking state from Klipper shaper_calibrate.py datas[i] = np.pad(datas[i], [(0, (M-N)+1), (0, 0)], mode='constant', constant_values=0) freqrsp = calc_freq_response(datas[i]) for n in range(group - 1): data = datas[i + n + 1] # Round up to the nearest power of 2 for faster FFT N = data.shape[0] T = data[-1,0] - data[0,0] M = 1 << int((N/T) * 0.5 - 1).bit_length() if N <= M: # If there is not enough lines in the array to be able to round up to the # nearest power of 2, we need to pad some zeros at the end of the array to # avoid entering a blocking state from Klipper shaper_calibrate.py data = np.pad(data, [(0, (M-N)+1), (0, 0)], mode='constant', constant_values=0) freqrsp.add_data(calc_freq_response(data)) if not psd_list: # First group, just put it in the result list first_freqs = freqrsp.freq_bins psd = freqrsp.psd_sum[first_freqs <= max_freq] px = freqrsp.psd_x[first_freqs <= max_freq] py = freqrsp.psd_y[first_freqs <= max_freq] pz = freqrsp.psd_z[first_freqs <= max_freq] psd_list.append([psd, px, py, pz]) else: # Not the first group, we need to interpolate every new signals # to the first one to equalize the frequency_bins between them signal_normalized = dict() freqs = freqrsp.freq_bins for axe in signal_axes: signal = freqrsp.get_psd(axe) signal_normalized[axe] = np.interp(first_freqs, freqs, signal) # Remove data above max_freq on all axes and add to the result list psd = signal_normalized['all'][first_freqs <= max_freq] px = signal_normalized['x'][first_freqs <= max_freq] py = signal_normalized['y'][first_freqs <= max_freq] pz = signal_normalized['z'][first_freqs <= max_freq] psd_list.append([psd, px, py, pz]) return first_freqs[first_freqs <= max_freq], psd_list def calc_powertot(psd_list, freqs): pwrtot_sum = [] pwrtot_x = [] pwrtot_y = [] pwrtot_z = [] for psd in psd_list: pwrtot_sum.append(np.trapz(psd[0], freqs)) pwrtot_x.append(np.trapz(psd[1], freqs)) pwrtot_y.append(np.trapz(psd[2], freqs)) pwrtot_z.append(np.trapz(psd[3], freqs)) return [pwrtot_sum, pwrtot_x, pwrtot_y, pwrtot_z] ###################################################################### # Graphing ###################################################################### def plot_total_power(ax, speeds, power_total): ax.set_title('Vibrations decomposition') ax.set_xlabel('Speed (mm/s)') ax.set_ylabel('Energy') ax.plot(speeds, power_total[0], label="X+Y+Z", alpha=0.6) ax.plot(speeds, power_total[1], label="X", alpha=0.6) ax.plot(speeds, power_total[2], label="Y", alpha=0.6) ax.plot(speeds, power_total[3], label="Z", alpha=0.6) ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) ax.grid(which='major', color='grey') ax.grid(which='minor', color='lightgrey') fontP = matplotlib.font_manager.FontProperties() fontP.set_size('medium') ax.legend(loc='best', prop=fontP) return def plot_spectrogram(ax, speeds, freqs, power_spectral_densities, max_freq): spectrum = np.empty([len(freqs), len(speeds)]) for i in range(len(speeds)): for j in range(len(freqs)): spectrum[j, i] = power_spectral_densities[i][0][j] ax.set_title("Summed vibrations spectrogram") ax.pcolormesh(speeds, freqs, spectrum, norm=matplotlib.colors.LogNorm(), cmap='inferno', shading='gouraud') ax.set_ylim([0., max_freq]) ax.set_ylabel('Frequency (hz)') ax.set_xlabel('Speed (mm/s)') return ###################################################################### # Startup and main routines ###################################################################### def parse_log(logname, opts): with open(logname) as f: for header in f: if not header.startswith('#'): break if not header.startswith('freq,psd_x,psd_y,psd_z,psd_xyz'): # Raw accelerometer data return np.loadtxt(logname, comments='#', delimiter=',') # Power spectral density data or shaper calibration data opts.error("File %s does not contain raw accelerometer data and therefore " "is not supported by graph_vibrations.py script. Please use " "calibrate_shaper.py script to process it instead." % (logname,)) def extract_speed(logname, opts): try: speed = re.search('sp(.+?)n', os.path.basename(logname)).group(1) except AttributeError: opts.error("File %s does not contain speed in its name and therefore " "is not supported by graph_vibrations.py script." % (logname,)) return int(speed) def sort_and_slice(raw_speeds, raw_datas, remove): # Sort to get the speeds and their datas aligned and in ascending order raw_speeds, raw_datas = zip(*sorted(zip(raw_speeds, raw_datas), key=operator.itemgetter(0))) # Remove beginning and end of the datas for each file to get only # constant speed data and remove the start/stop phase of the movements datas = [] for data in raw_datas: sliced = round((len(data) * remove / 100) / 2) datas.append(data[sliced:len(data)-sliced]) return raw_speeds, datas def setup_klipper_import(kdir): global shaper_calibrate sys.path.append(os.path.join(kdir, 'klippy')) shaper_calibrate = importlib.import_module('.shaper_calibrate', 'extras') def main(): # Parse command-line arguments usage = "%prog [options] " opts = optparse.OptionParser(usage) opts.add_option("-o", "--output", type="string", dest="output", default=None, help="filename of output graph") opts.add_option("-a", "--axis", type="string", dest="axisname", default=None, help="axis name to be shown on the side of the graph") opts.add_option("-f", "--max_freq", type="float", default=1000., help="maximum frequency to graph") opts.add_option("-r", "--remove", type="int", default=0, help="percentage of data removed at start/end of each files") opts.add_option("-k", "--klipper_dir", type="string", dest="klipperdir", default="/home/pi/klipper", help="main klipper directory") options, args = opts.parse_args() if len(args) < 1: opts.error("No CSV file(s) to analyse") if options.output is None: opts.error("You must specify an output file.png to use the script (option -o)") if options.remove > 50 or options.remove < 0: opts.error("You must specify a correct percentage (option -r) in the 0-50 range") setup_klipper_import(options.klipperdir) # Parse the raw data and get them ready for analysis raw_datas = [parse_log(filename, opts) for filename in args] raw_speeds = [extract_speed(filename, opts) for filename in args] speeds, datas = sort_and_slice(raw_speeds, raw_datas, options.remove) # As we assume that we have the same number of file for each speeds. We can group # the PSD results by this number (to combine vibrations at given speed on all movements) group_by = speeds.count(speeds[0]) # Compute psd and total power of the signal freqs, power_spectral_densities = calc_psd(datas, group_by, options.max_freq) power_total = calc_powertot(power_spectral_densities, freqs) fig, axs = matplotlib.pyplot.subplots(2, 1, sharex=True) fig.suptitle("Machine vibrations - " + options.axisname + " moves", fontsize=16) # Remove speeds duplicates and graph the processed datas speeds = list(OrderedDict((x, True) for x in speeds).keys()) plot_total_power(axs[0], speeds, power_total) plot_spectrogram(axs[1], speeds, freqs, power_spectral_densities, options.max_freq) fig.set_size_inches(10, 10) fig.tight_layout() fig.subplots_adjust(top=0.92) fig.savefig(options.output) if __name__ == '__main__': main()