13 KiB
📋 DeltaBot Implementation Plan
Generated: October 8, 2025
Based on: ROADMAP.md analysis and codebase review
🎯 Executive Summary
This implementation plan addresses the 9 open Alpha issues and provides a structured approach to complete DeltaBot's core functionality. The plan prioritizes immediate blockers, foundational improvements, and then advanced features.
🔥 Phase 1: Critical Fixes & Foundations
Estimated Time: 2-3 weeks
Issue #10 — Post "Reply" (HIGH PRIORITY)
Problem: Bot posts new messages instead of replies, breaking conversation flow
Solution: Implement Discord reply functionality
Implementation Steps:
-
Modify
scheduler/simple.py:# Instead of: await channel.send(message) # Get recent message and reply to it recent_msgs = [msg async for msg in channel.history(limit=3) if not msg.author.bot] if recent_msgs: await recent_msgs[0].reply(message) else: await channel.send(message) -
Update
autochat.py:# In generate_auto_reply function, return reply object instead of string return {"content": reply, "reference": message} -
Modify
bot.pymessage handling:# Handle reply objects properly if isinstance(reply, dict) and reply.get("reference"): await reply["reference"].reply(reply["content"]) else: await message.channel.send(reply)
Acceptance Criteria:
- Scheduled messages reply to recent user messages
- Auto-replies properly thread conversations
- Fallback to regular message when no recent messages exist
Issue #36 — Memory Persistence (HIGH PRIORITY)
Problem: No persistent context beyond immediate messages
Solution: Implement SQLite-based conversation memory
Implementation Steps:
-
Create
memory.pymodule:import sqlite3 from datetime import datetime, timedelta class ConversationMemory: def __init__(self, db_path="data/memory.db"): self.db_path = db_path self.init_db() def store_message(self, channel_id, user_id, content, timestamp): # Store message with sentiment analysis def get_context(self, channel_id, hours=24, max_messages=50): # Retrieve relevant context def get_user_context(self, user_id, days=7): # Get user-specific conversation history -
Integrate with existing context system:
- Replace
context.pyJSON approach with database queries - Add memory cleanup for old conversations (>30 days)
- Include user interaction patterns in memory
- Replace
-
Database Schema:
CREATE TABLE conversations ( id INTEGER PRIMARY KEY, channel_id TEXT, user_id TEXT, username TEXT, content TEXT, timestamp DATETIME, sentiment REAL, importance_score REAL );
Acceptance Criteria:
- Messages stored in SQLite database
- Context retrieval includes conversation history
- Memory cleanup prevents database bloat
- User-specific context tracking
Issue #25 — Enable Modelfile Support (MEDIUM PRIORITY)
Problem: Modelfile system partially implemented but not fully functional
Solution: Complete modelfile integration and testing
Implementation Steps:
-
Fix modelfile loading issues:
- Debug why personality switching doesn't work
- Ensure
MODFILEglobal variable updates properly - Add validation for modelfile syntax
-
Enhance
modelfile.py:def validate_modfile(modfile_dict): """Validate modfile has required fields""" required = ['name', 'base_model'] return all(key in modfile_dict for key in required) def apply_modfile_to_persona(modfile): """Convert modfile to persona format for compatibility""" return { 'name': modfile.get('name'), 'prompt_inject': modfile.get('system', ''), 'emoji': '🤖', # Default or extract from system prompt 'style_prefix': f"{modfile.get('name', 'Bot')}:" } -
Add runtime switching:
- Complete
!modfile switchcommand implementation - Add validation and error handling
- Test with existing examples (gojo.mod, delta.mod)
- Complete
Acceptance Criteria:
- Modelfile personality switching works in real-time
!modfile infoshows current active modelfile- Error handling for invalid modelfiles
- Backward compatibility with persona.json
🚀 Phase 2: Core Features Enhancement
Estimated Time: 3-4 weeks
Issue #17 — Image Generation (HIGH PRIORITY)
Problem: No image generation capability
Solution: Integrate with local Stable Diffusion or external API
Implementation Steps:
-
Create
image_gen.pymodule:import requests from io import BytesIO class ImageGenerator: def __init__(self): self.api_url = os.getenv("SD_API_URL", "http://localhost:7860") async def generate_image(self, prompt, style="anime"): """Generate image using Stable Diffusion API""" # Implementation for local SD or external service def enhance_prompt(self, user_prompt, persona): """Add persona-specific style to prompts""" return f"{user_prompt}, {persona.get('image_style', 'digital art')}" -
Add Discord command:
@bot.command(name="generate", aliases=["img", "draw"]) async def generate_image(ctx, *, prompt): async with ctx.typing(): image_data = await image_generator.generate_image(prompt) if image_data: file = discord.File(BytesIO(image_data), "generated.png") await ctx.send(file=file) -
Integration options:
- Option A: Local Stable Diffusion WebUI API
- Option B: External service (Replicate, HuggingFace)
- Option C: Simple DALL-E API integration
Acceptance Criteria:
!generate <prompt>command works- Images posted directly to Discord
- Persona-aware prompt enhancement
- Error handling for generation failures
Issue #16 — Image Interpretation (MEDIUM PRIORITY)
Problem: Bot cannot analyze or respond to images
Solution: Integrate vision model for image understanding
Implementation Steps:
-
Add vision capability to
ai.py:async def analyze_image(image_url, prompt="Describe this image"): """Use vision model to analyze images""" # Options: LLaVA, BLIP, or multimodal API async def generate_image_response(image_url, context=""): """Generate contextual response to images""" analysis = await analyze_image(image_url) return get_ai_response(f"Image shows: {analysis}. {context}") -
Extend message handling in
bot.py:@bot.event async def on_message(message): # Existing logic... # Handle image attachments if message.attachments: for attachment in message.attachments: if attachment.content_type.startswith('image/'): response = await generate_image_response( attachment.url, f"User {message.author.display_name} shared this image" ) await message.reply(response)
Acceptance Criteria:
- Bot responds to image uploads
- Accurate image description capability
- Integration with existing personality system
- Support for memes and screenshots
Issue #22 — Remote Admin Panel (MEDIUM-LOW PRIORITY)
Problem: No web interface for bot management
Solution: Create simple web dashboard
Implementation Steps:
-
Create
admin_panel.py:from flask import Flask, render_template, request, jsonify import json app = Flask(__name__) @app.route("/") def dashboard(): return render_template("dashboard.html") @app.route("/api/settings", methods=["GET", "POST"]) def settings_api(): # Handle settings updates @app.route("/api/users") def users_api(): # Return user profiles data -
Basic dashboard features:
- View active users and interaction stats
- Modify bot settings (cooldowns, scheduling)
- Switch personalities/modelfiles
- View recent conversations
- Basic moderation controls
Acceptance Criteria:
- Web interface accessible on local network
- Real-time bot statistics
- Settings modification capability
- Authentication/security for admin access
🧪 Phase 3: Advanced Features
Estimated Time: 4-5 weeks
Issue #37 — LoRA Support (LOW PRIORITY)
Problem: No fine-tuning capability for model behavior
Solution: Research and implement LoRA model fine-tuning
Implementation Notes:
- This is highly technical and may require external tools
- Consider if it's necessary for core functionality
- Could be postponed to future releases
Issue #26 — Web Usage (MEDIUM PRIORITY)
Problem: Bot cannot access web content
Solution: Add web scraping and API integration
Implementation Steps:
-
Create
web_tools.py:import requests from bs4 import BeautifulSoup class WebTools: async def search_reddit(self, query, subreddit="memes"): """Search Reddit for content""" async def get_news_headlines(self): """Fetch trending news""" async def search_web(self, query): """DuckDuckGo search integration""" -
Add web-aware commands:
!news- Get current headlines!meme- Fetch random meme from Reddit!search <query>- Web search with summarized results
Issue #24 — Monetization Setup (LOW PRIORITY)
Problem: No monetization framework
Solution: Add subscription/donation infrastructure
Implementation Steps:
- Integration with payment processors
- Feature gating for premium users
- Usage analytics and billing
- Note: This should be implemented last after core features are stable
📊 Implementation Priority Matrix
| Issue | Priority | Complexity | User Impact | Timeline |
|---|---|---|---|---|
| #10 Reply Posts | 🔴 High | Low | High | Week 1 |
| #36 Memory | 🔴 High | Medium | High | Week 2-3 |
| #25 Modelfile | 🟡 Medium | Medium | Medium | Week 4 |
| #17 Image Gen | 🟡 Medium | High | High | Week 5-6 |
| #16 Image Vision | 🟡 Medium | High | Medium | Week 7-8 |
| #22 Admin Panel | 🟢 Low | Medium | Low | Week 9-10 |
| #26 Web Usage | 🟢 Low | Medium | Medium | Week 11-12 |
| #37 LoRA | 🟢 Low | Very High | Low | Future |
| #24 Monetization | 🟢 Low | High | Low | Future |
🛠 Technical Recommendations
Code Quality Improvements:
- Add type hints throughout codebase
- Implement proper error handling and logging
- Create unit tests for core functions
- Add configuration validation
- Implement proper database migrations
Infrastructure:
- Set up proper logging and monitoring
- Add health check endpoints
- Implement graceful shutdown handling
- Add backup/restore functionality
Security:
- Sanitize user inputs
- Add rate limiting
- Implement proper secret management
- Add CORS and authentication for admin panel
📈 Success Metrics
Phase 1 Success Criteria:
- Bot reliably replies to messages (not new posts)
- Persistent conversation memory working
- Modelfile switching functional
- Zero critical bugs in core functionality
Phase 2 Success Criteria:
- Image generation and analysis working
- Admin panel accessible and functional
- User engagement increased by 20%
- System stable with multiple concurrent users
Phase 3 Success Criteria:
- Web integration providing value
- Advanced features enhance user experience
- Bot ready for production deployment
- Documentation complete for self-hosting
🚦 Next Actions
Week 1 - Immediate Steps:
- Fix Issue #10 - Implement reply functionality
- Start Issue #36 - Set up memory database schema
- Test current modelfile system - Identify specific issues with #25
- Set up development environment with proper logging and debugging
Week 2 - Foundation Building:
- Complete memory system implementation
- Fix modelfile personality switching
- Add comprehensive error handling
- Create basic test suite
Beyond Week 2:
- Follow the priority matrix above
- Regular testing and user feedback integration
- Incremental feature rollouts
- Performance optimization as needed
📝 Note: This plan assumes development time of 10-15 hours per week. Adjust timelines based on actual availability and complexity discovered during implementation.
Last updated: October 8, 2025